An Unscented Kalman Filter-Based Robust State of Health Prediction Technique for Lithium Ion Batteries

نویسندگان

چکیده

Electric vehicles (EVs) have emerged as a promising solution for sustainable transportation. The high energy density, long cycle life, and low self-discharge rate of lithium-ion batteries make them an ideal choice EVs. Recently, these been prone to faster decay in life span, leading sudden failure the battery. To avoid uncertainty among EV users with battery failures, robust health monitoring prediction scheme is required management system. In this regard, Unscented Kalman Filter (UKF)-based technique has developed accurate reliable status. UKF approximates nonlinearity using set sigma points propagates via nonlinear function enhance estimation accuracy. Furthermore, UKF-based considers state charge (SOC) internal resistance Here, compared Extended filter (EKF) scheme. robustness EKF-based prognostic techniques were studied under varying initial SOC values. Under abrupt changing conditions, proposed performed effectively terms (SOH) prediction. Accurate SOH determination can help decide when needs be replaced or if adjustments need made extend its life. Ultimately, essential vehicular applications plays pivotal role ensuring sustainability minimizing environmental impacts.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter

An accurate state of charge (SOC) estimation is the basis of the Battery Management System (BMS). In this paper, a new estimation method which considers fractional calculus is proposed to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based on fractional calculus theory is developed to model the lithium battery characteristics. After that, a pulse charac...

متن کامل

An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries

An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimatio...

متن کامل

State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization

State of charge (SOC) estimation is of great significance for the safe operation of lithium-ion battery (LIB) packs. Improving the accuracy of SOC estimation results and reducing the algorithm complexity are important for the state estimation. In this paper, a zeroaxial straight line, whose slope changes along with SOC, is used to map the predictive SOC to the predictive open circuit voltage (O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Batteries

سال: 2023

ISSN: ['2313-0105']

DOI: https://doi.org/10.3390/batteries9070376